ArviZ Quickstart
This tutorial is adapted from ArviZ's quickstart.
Setup
Here we add the necessary packages for this notebook and load a few we will use throughout.
using ArviZ, ArviZPythonPlots, Distributions, LinearAlgebra, Random, StanSample, Turing
# ArviZPythonPlots ships with style sheets!
use_style("arviz-darkgrid")
Get started with plotting
To plot with ArviZ, we need to load the ArviZPythonPlots package. ArviZ is designed to be used with libraries like Stan, Turing.jl, and Soss.jl but works fine with raw arrays.
rng1 = Random.MersenneTwister(37772);
begin
plot_posterior(randn(rng1, 100_000))
gcf()
end
Plotting a dictionary of arrays, ArviZ will interpret each key as the name of a different random variable. Each row of an array is treated as an independent series of draws from the variable, called a chain. Below, we have 10 chains of 50 draws each for four different distributions.
let
s = (50, 10)
plot_forest((
normal=randn(rng1, s),
gumbel=rand(rng1, Gumbel(), s),
student_t=rand(rng1, TDist(6), s),
exponential=rand(rng1, Exponential(), s),
),)
gcf()
end
Plotting with MCMCChains.jl's Chains
objects produced by Turing.jl
ArviZ is designed to work well with high dimensional, labelled data. Consider the eight schools model, which roughly tries to measure the effectiveness of SAT classes at eight different schools. To show off ArviZ's labelling, I give the schools the names of a different eight schools.
This model is small enough to write down, is hierarchical, and uses labelling. Additionally, a centered parameterization causes divergences (which are interesting for illustration).
First we create our data and set some sampling parameters.
begin
J = 8
y = [28.0, 8.0, -3.0, 7.0, -1.0, 1.0, 18.0, 12.0]
σ = [15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0]
schools = [
"Choate",
"Deerfield",
"Phillips Andover",
"Phillips Exeter",
"Hotchkiss",
"Lawrenceville",
"St. Paul's",
"Mt. Hermon",
]
ndraws = 1_000
ndraws_warmup = 1_000
nchains = 4
end;
Now we write and run the model using Turing:
Turing.@model function model_turing(y, σ, J=length(y))
μ ~ Normal(0, 5)
τ ~ truncated(Cauchy(0, 5), 0, Inf)
θ ~ filldist(Normal(μ, τ), J)
for i in 1:J
y[i] ~ Normal(θ[i], σ[i])
end
end
model_turing (generic function with 4 methods)
rng2 = Random.MersenneTwister(16653);
begin
param_mod_turing = model_turing(y, σ)
sampler = NUTS(ndraws_warmup, 0.8)
turing_chns = Turing.sample(
rng2, model_turing(y, σ), sampler, MCMCThreads(), ndraws, nchains
)
end;
Most ArviZ functions work fine with Chains
objects from Turing:
begin
plot_autocorr(turing_chns; var_names=(:μ, :τ))
gcf()
end
Convert to InferenceData
For much more powerful querying, analysis and plotting, we can use built-in ArviZ utilities to convert Chains
objects to multidimensional data structures with named dimensions and indices. Note that for such dimensions, the information is not contained in Chains
, so we need to provide it.
ArviZ is built to work with InferenceData
, and the more groups it has access to, the more powerful analyses it can perform.
idata_turing_post = from_mcmcchains(
turing_chns;
coords=(; school=schools),
dims=NamedTuple(k => (:school,) for k in (:y, :σ, :θ)),
library="Turing",
)
posterior
╭──────────────────╮
│ 1000×4×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:μ eltype: Float64 dims: draw, chain size: 1000×4
:τ eltype: Float64 dims: draw, chain size: 1000×4
:θ eltype: Float64 dims: draw, chain, school size: 1000×4×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 2 entries:
"created_at" => "2024-08-10T23:18:45.082"
"inference_library" => "Turing"
sample_stats
╭────────────────╮
│ 1000×4 Dataset │
├────────────────┴ dims ┐
↓ draw, → chain
├─────────────────┴───────────────────────────────────────── layers ┐
:energy eltype: Float64 dims: draw, chain size: 1000×4
:n_steps eltype: Int64 dims: draw, chain size: 1000×4
:diverging eltype: Bool dims: draw, chain size: 1000×4
:max_energy_error eltype: Float64 dims: draw, chain size: 1000×4
:energy_error eltype: Float64 dims: draw, chain size: 1000×4
:is_accept eltype: Bool dims: draw, chain size: 1000×4
:log_density eltype: Float64 dims: draw, chain size: 1000×4
:tree_depth eltype: Int64 dims: draw, chain size: 1000×4
:step_size eltype: Float64 dims: draw, chain size: 1000×4
:acceptance_rate eltype: Float64 dims: draw, chain size: 1000×4
:lp eltype: Float64 dims: draw, chain size: 1000×4
:step_size_nom eltype: Float64 dims: draw, chain size: 1000×4
├───────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 2 entries:
"created_at" => "2024-08-10T23:18:45.024"
"inference_library" => "Turing"
Each group is an ArviZ.Dataset
, a DimensionalData.AbstractDimStack
that can be used identically to a DimensionalData.Dimstack
. We can view a summary of the dataset.
idata_turing_post.posterior
╭──────────────────╮ │ 1000×4×8 Dataset │ ├──────────────────┴───────────────────────────────────────────────────────────── dims ┐ ↓ draw , → chain , ↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered ├────────────────────────────────────────────────────────────────────────────── layers ┤ :μ eltype: Float64 dims: draw, chain size: 1000×4 :τ eltype: Float64 dims: draw, chain size: 1000×4 :θ eltype: Float64 dims: draw, chain, school size: 1000×4×8 ├──────────────────────────────────────────────────────────────────────────── metadata ┤ Dict{String, Any} with 2 entries: "created_at" => "2024-08-10T23:18:45.082" "inference_library" => "Turing"
Here is a plot of the trace. Note the intelligent labels.
begin
plot_trace(idata_turing_post)
gcf()
end
We can also generate summary stats...
summarystats(idata_turing_post)
mean | std | hdi_3% | hdi_97% | mcse_mean | mcse_std | ess_tail | ess_bulk | rhat | |
---|---|---|---|---|---|---|---|---|---|
μ | 4.3 | 3.3 | -1.81 | 10.5 | 0.11 | 0.062 | 1192 | 845 | 1.01 |
τ | 4.4 | 3.3 | 0.673 | 10.4 | 0.20 | 0.12 | 109 | 115 | 1.05 |
θ[Choate] | 6.6 | 6.1 | -4.01 | 18.0 | 0.21 | 0.19 | 1627 | 750 | 1.01 |
θ[Deerfield] | 5.0 | 5.0 | -4.81 | 14.2 | 0.14 | 0.14 | 1952 | 1277 | 1.01 |
θ[Phillips Andover] | 3.7 | 5.7 | -7.07 | 14.6 | 0.14 | 0.16 | 1979 | 1429 | 1.01 |
θ[Phillips Exeter] | 4.8 | 5.1 | -4.60 | 14.4 | 0.14 | 0.14 | 2064 | 1178 | 1.00 |
θ[Hotchkiss] | 3.3 | 4.9 | -6.08 | 12.6 | 0.15 | 0.11 | 1804 | 1098 | 1.01 |
θ[Lawrenceville] | 3.8 | 5.2 | -6.12 | 13.3 | 0.13 | 0.14 | 1965 | 1331 | 1.00 |
θ[St. Paul's] | 6.6 | 5.4 | -2.68 | 17.4 | 0.18 | 0.14 | 1842 | 853 | 1.01 |
θ[Mt. Hermon] | 4.9 | 5.6 | -5.71 | 14.8 | 0.14 | 0.19 | 1794 | 1393 | 1.00 |
...and examine the energy distribution of the Hamiltonian sampler.
begin
plot_energy(idata_turing_post)
gcf()
end
Additional information in Turing.jl
With a few more steps, we can use Turing to compute additional useful groups to add to the InferenceData
.
To sample from the prior, one simply calls sample
but with the Prior
sampler:
prior = Turing.sample(rng2, param_mod_turing, Prior(), ndraws);
To draw from the prior and posterior predictive distributions we can instantiate a "predictive model", i.e. a Turing model but with the observations set to missing
, and then calling predict
on the predictive model and the previously drawn samples:
begin
# Instantiate the predictive model
param_mod_predict = model_turing(similar(y, Missing), σ)
# and then sample!
prior_predictive = Turing.predict(rng2, param_mod_predict, prior)
posterior_predictive = Turing.predict(rng2, param_mod_predict, turing_chns)
end;
And to extract the pointwise log-likelihoods, which is useful if you want to compute metrics such as loo
,
log_likelihood = let
log_likelihood = Turing.pointwise_loglikelihoods(
param_mod_turing, MCMCChains.get_sections(turing_chns, :parameters)
)
# Ensure the ordering of the loglikelihoods matches the ordering of `posterior_predictive`
ynames = string.(keys(posterior_predictive))
log_likelihood_y = getindex.(Ref(log_likelihood), ynames)
(; y=cat(log_likelihood_y...; dims=3))
end;
This can then be included in the from_mcmcchains
call from above:
idata_turing = from_mcmcchains(
turing_chns;
posterior_predictive,
log_likelihood,
prior,
prior_predictive,
observed_data=(; y),
coords=(; school=schools),
dims=NamedTuple(k => (:school,) for k in (:y, :σ, :θ)),
library=Turing,
)
posterior
╭──────────────────╮
│ 1000×4×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:μ eltype: Float64 dims: draw, chain size: 1000×4
:τ eltype: Float64 dims: draw, chain size: 1000×4
:θ eltype: Float64 dims: draw, chain, school size: 1000×4×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:13.991"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
posterior_predictive
╭──────────────────╮
│ 1000×4×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:y eltype: Float64 dims: draw, chain, school size: 1000×4×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:13.717"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
log_likelihood
╭──────────────────╮
│ 1000×4×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:y eltype: Float64 dims: draw, chain, school size: 1000×4×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:13.86"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
sample_stats
╭────────────────╮
│ 1000×4 Dataset │
├────────────────┴ dims ┐
↓ draw, → chain
├─────────────────┴───────────────────────────────────────── layers ┐
:energy eltype: Float64 dims: draw, chain size: 1000×4
:n_steps eltype: Int64 dims: draw, chain size: 1000×4
:diverging eltype: Bool dims: draw, chain size: 1000×4
:max_energy_error eltype: Float64 dims: draw, chain size: 1000×4
:energy_error eltype: Float64 dims: draw, chain size: 1000×4
:is_accept eltype: Bool dims: draw, chain size: 1000×4
:log_density eltype: Float64 dims: draw, chain size: 1000×4
:tree_depth eltype: Int64 dims: draw, chain size: 1000×4
:step_size eltype: Float64 dims: draw, chain size: 1000×4
:acceptance_rate eltype: Float64 dims: draw, chain size: 1000×4
:lp eltype: Float64 dims: draw, chain size: 1000×4
:step_size_nom eltype: Float64 dims: draw, chain size: 1000×4
├───────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:13.991"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
prior
╭──────────────────╮
│ 1000×1×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:μ eltype: Float64 dims: draw, chain size: 1000×1
:τ eltype: Float64 dims: draw, chain size: 1000×1
:θ eltype: Float64 dims: draw, chain, school size: 1000×1×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:14.468"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
prior_predictive
╭──────────────────╮
│ 1000×1×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:y eltype: Float64 dims: draw, chain, school size: 1000×1×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:14.329"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
sample_stats_prior
╭────────────────╮
│ 1000×1 Dataset │
├────────────────┴ dims ┐
↓ draw, → chain
├─────────────────┴─────────────────────────── layers ┐
:lp eltype: Float64 dims: draw, chain size: 1000×1
├─────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:14.419"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
observed_data
╭───────────────────╮
│ 8-element Dataset │
├───────────────────┴──────────────────────────────────────────────────── dims ┐
↓ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:y eltype: Float64 dims: school size: 8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 3 entries:
"created_at" => "2024-08-10T23:19:14.681"
"inference_library_version" => "0.30.9"
"inference_library" => "Turing"
Then we can for example compute the expected leave-one-out (LOO) predictive density, which is an estimate of the out-of-distribution predictive fit of the model:
loo(idata_turing) # higher ELPD is better
PSISLOOResult with estimates elpd elpd_mcse p p_mcse -31 1.4 1.0 0.33 and PSISResult with 1000 draws, 4 chains, and 8 parameters Pareto shape (k) diagnostic values: Count Min. ESS (-Inf, 0.5] good 5 (62.5%) 404 (0.5, 0.7] okay 3 (37.5%) 788
If the model is well-calibrated, i.e. it replicates the true generative process well, the CDF of the pointwise LOO values should be similarly distributed to a uniform distribution. This can be inspected visually:
begin
plot_loo_pit(idata_turing; y=:y, ecdf=true)
gcf()
end
Plotting with Stan.jl outputs
StanSample.jl comes with built-in support for producing InferenceData
outputs.
Here is the same centered eight schools model in Stan:
begin
schools_code = """
data {
int<lower=0> J;
array[J] real y;
array[J] real<lower=0> sigma;
}
parameters {
real mu;
real<lower=0> tau;
array[J] real theta;
}
model {
mu ~ normal(0, 5);
tau ~ cauchy(0, 5);
theta ~ normal(mu, tau);
y ~ normal(theta, sigma);
}
generated quantities {
vector[J] log_lik;
vector[J] y_hat;
for (j in 1:J) {
log_lik[j] = normal_lpdf(y[j] | theta[j], sigma[j]);
y_hat[j] = normal_rng(theta[j], sigma[j]);
}
}
"""
schools_data = Dict("J" => J, "y" => y, "sigma" => σ)
idata_stan = mktempdir() do path
stan_model = SampleModel("schools", schools_code, path)
_ = stan_sample(
stan_model;
data=schools_data,
num_chains=nchains,
num_warmups=ndraws_warmup,
num_samples=ndraws,
seed=28983,
summary=false,
)
return StanSample.inferencedata(
stan_model;
posterior_predictive_var=:y_hat,
observed_data=(; y),
log_likelihood_var=:log_lik,
coords=(; school=schools),
dims=NamedTuple(
k => (:school,) for k in (:y, :sigma, :theta, :log_lik, :y_hat)
),
)
end
end
posterior
╭──────────────────╮
│ 1000×4×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:mu eltype: Float64 dims: draw, chain size: 1000×4
:tau eltype: Float64 dims: draw, chain size: 1000×4
:theta eltype: Float64 dims: draw, chain, school size: 1000×4×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"created_at" => "2024-08-10T23:19:56.037"
posterior_predictive
╭──────────────────╮
│ 1000×4×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:y_hat eltype: Float64 dims: draw, chain, school size: 1000×4×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"created_at" => "2024-08-10T23:19:55.621"
log_likelihood
╭──────────────────╮
│ 1000×4×8 Dataset │
├──────────────────┴───────────────────────────────────────────────────── dims ┐
↓ draw ,
→ chain ,
↗ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:log_lik eltype: Float64 dims: draw, chain, school size: 1000×4×8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"created_at" => "2024-08-10T23:19:55.959"
sample_stats
╭────────────────╮
│ 1000×4 Dataset │
├────────────────┴ dims ┐
↓ draw, → chain
├─────────────────┴──────────────────────────────────────── layers ┐
:tree_depth eltype: Int64 dims: draw, chain size: 1000×4
:energy eltype: Float64 dims: draw, chain size: 1000×4
:diverging eltype: Bool dims: draw, chain size: 1000×4
:acceptance_rate eltype: Float64 dims: draw, chain size: 1000×4
:n_steps eltype: Int64 dims: draw, chain size: 1000×4
:lp eltype: Float64 dims: draw, chain size: 1000×4
:step_size eltype: Float64 dims: draw, chain size: 1000×4
├──────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"created_at" => "2024-08-10T23:19:55.72"
observed_data
╭───────────────────╮
│ 8-element Dataset │
├───────────────────┴──────────────────────────────────────────────────── dims ┐
↓ school Categorical{String} [Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
├────────────────────────────────────────────────────────────────────── layers ┤
:y eltype: Float64 dims: school size: 8
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"created_at" => "2024-08-10T23:19:56.084"
begin
plot_density(idata_stan; var_names=(:mu, :tau))
gcf()
end
Here is a plot showing where the Hamiltonian sampler had divergences:
begin
plot_pair(
idata_stan;
coords=Dict(:school => ["Choate", "Deerfield", "Phillips Andover"]),
divergences=true,
)
gcf()
end
using PlutoUI
using Pkg, InteractiveUtils
with_terminal(Pkg.status; color=false)
Status `~/work/ArviZ.jl/ArviZ.jl/docs/Project.toml` ⌅ [cbdf2221] AlgebraOfGraphics v0.6.20 [131c737c] ArviZ v0.12.0 `~/work/ArviZ.jl/ArviZ.jl` [2f96bb34] ArviZExampleData v0.1.11 [4a6e88f0] ArviZPythonPlots v0.1.7 ⌅ [13f3f980] CairoMakie v0.11.11 [a93c6f00] DataFrames v1.6.1 [0703355e] DimensionalData v0.27.6 [31c24e10] Distributions v0.25.110 [e30172f5] Documenter v1.5.0 [f6006082] EvoTrees v0.16.7 [b5cf5a8d] InferenceObjects v0.4.2 [be115224] MCMCDiagnosticTools v0.3.10 [a7f614a8] MLJBase v1.7.0 [614be32b] MLJIteration v0.6.2 [ce719bf2] PSIS v0.9.5 [359b1769] PlutoStaticHTML v6.0.27 [7f904dfe] PlutoUI v0.7.59 [7f36be82] PosteriorStats v0.2.5 [c1514b29] StanSample v7.10.1 [a19d573c] StatisticalMeasures v0.1.6 ⌅ [2913bbd2] StatsBase v0.33.21 ⌅ [fce5fe82] Turing v0.30.9 [f43a241f] Downloads v1.6.0 [37e2e46d] LinearAlgebra [10745b16] Statistics v1.10.0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated`
with_terminal(versioninfo)
Julia Version 1.10.4 Commit 48d4fd48430 (2024-06-04 10:41 UTC) Build Info: Official https://julialang.org/ release Platform Info: OS: Linux (x86_64-linux-gnu) CPU: 4 × AMD EPYC 7763 64-Core Processor WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-15.0.7 (ORCJIT, znver3) Threads: 2 default, 0 interactive, 1 GC (on 4 virtual cores) Environment: JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager JULIA_NUM_THREADS = 2 JULIA_REVISE_WORKER_ONLY = 1 JULIA_PYTHONCALL_EXE = /home/runner/work/ArviZ.jl/ArviZ.jl/docs/.CondaPkg/env/bin/python