Dataset
Type definition
InferenceObjects.Dataset
— TypeDataset{K,T,N,L} <: DimensionalData.AbstractDimStack{K,T,N,L}
Container of dimensional arrays sharing some dimensions.
This type is an DimensionalData.AbstractDimStack
that implements the same interface as DimensionalData.DimStack
and has identical usage.
Constructors
Dataset(data::DimensionalData.AbstractDimArray...)
Dataset(data::Tuple{Vararg{<:DimensionalData.AbstractDimArray}})
Dataset(data::NamedTuple{Keys,Vararg{<:DimensionalData.AbstractDimArray}})
Dataset(
data::NamedTuple,
dims::Tuple{Vararg{DimensionalData.Dimension}};
metadata=DimensionalData.NoMetadata(),
)
In most cases, use convert_to_dataset
to create a Dataset
instead of directly using a constructor.
General conversion
InferenceObjects.convert_to_dataset
— Functionconvert_to_dataset(obj; group = :posterior, kwargs...) -> Dataset
Convert a supported object to a Dataset
.
In most cases, this function calls convert_to_inference_data
and returns the corresponding group
.
InferenceObjects.namedtuple_to_dataset
— Functionnamedtuple_to_dataset(data; kwargs...) -> Dataset
Convert NamedTuple
mapping variable names to arrays to a Dataset
.
Any non-array values will be converted to a 0-dimensional array.
Keywords
attrs::AbstractDict{<:AbstractString}
: a collection of metadata to attach to the dataset, in addition to defaults. Values should be JSON serializable.library::Union{String,Module}
: library used for performing inference. Will be attached to theattrs
metadata.dims
: a collection mapping variable names to collections of objects containing dimension names. Acceptable such objects are:Symbol
: dimension nameType{<:DimensionsionalData.Dimension}
: dimension typeDimensionsionalData.Dimension
: dimension, potentially with indicesNothing
: no dimension name provided, dimension name is automatically generated
coords
: a collection indexable by dimension name specifying the indices of the given dimension. If indices for a dimension indims
are provided, they are used even if the dimension contains its own indices. If a dimension is missing, its indices are automatically generated.
DimensionalData
As a DimensionalData.AbstractDimStack
, Dataset
also implements the AbstractDimStack
API and can be used like a DimStack
. See DimensionalData's documentation for example usage.
Tables inteface
Dataset
implements the Tables interface. This allows Dataset
s to be used as sources for any function that can accept a table. For example, it's straightforward to:
- write to CSV with CSV.jl
- flatten to a DataFrame with DataFrames.jl
- plot with StatsPlots.jl
- plot with AlgebraOfGraphics.jl