Internal
PSIS.GeneralizedPareto — TypeGeneralizedPareto{T<:Real}The generalized Pareto distribution.
Constructor
GeneralizedPareto(μ, σ, k)Construct the generalized Pareto distribution (GPD) with location parameter $μ$, scale parameter $σ$ and shape parameter $k$.
The shape parameter $k$ is equivalent to the commonly used shape parameter $ξ$. This is the same parameterization used by Vehtari et al. [1] and is related to that used by Zhang and Stephens [2] as $k \mapsto -k$.
PSIS.fit_gpd — Methodfit_gpd(x; μ=0, kwargs...)Fit a GeneralizedPareto with location μ to the data x.
The fit is performed using the Empirical Bayes method of Zhang and Stephens [2].
Keywords
prior_adjusted::Bool=true, Iftrue, a weakly informative Normal prior centered on $\frac{1}{2}$ is used for the shape $k$.sorted::Bool=issorted(x): Iftrue,xis assumed to be sorted. Iffalse, a sorted copy ofxis made.min_points::Int=30: The minimum number of quadrature points to use when estimating the posterior mean of $\theta = \frac{\xi}{\sigma}$.
References
- [2] Zhang & Stephens, Technometrics 51:3 (2009)