Example Gallery
Autocorrelation Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
plot_autocorr(data; var_names=["tau", "mu"])
gcf()

See plot_autocorr
Bayes Factor Plot
using ArviZ, ArviZPythonPlots
use_style("arviz-darkgrid")
idata = from_namedtuple((a = 1 .+ randn(5_000) ./ 2,), prior=(a = randn(5_000),))
plot_bf(idata; var_name="a", ref_val=0)
gcf()

See plot_bf
Bayesian P-Value Posterior Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("regression1d")
plot_bpv(data)
gcf()

See plot_bpv
Bayesian P-Value with Median T Statistic Posterior Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("regression1d")
plot_bpv(data; kind="t_stat", t_stat="0.5")
gcf()

See plot_bpv
Compare Plot
using ArviZ, ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
model_compare = compare(
(
var"Centered 8 schools" = load_example_data("centered_eight"),
var"Non-centered 8 schools" = load_example_data("non_centered_eight"),
),
)
plot_compare(model_compare; figsize=(12, 4))
gcf()

See compare
, plot_compare
Density Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
centered_data = load_example_data("centered_eight")
non_centered_data = load_example_data("non_centered_eight")
plot_density(
[centered_data, non_centered_data];
data_labels=["Centered", "Non Centered"],
var_names=["theta"],
shade=0.1,
)
gcf()

See plot_density
Dist Plot
using ArviZPythonPlots, Distributions, Random
Random.seed!(308)
use_style("arviz-darkgrid")
a = rand(Poisson(4), 1000)
b = rand(Normal(0, 1), 1000)
_, ax = subplots(1, 2; figsize=(10, 4))
plot_dist(a; color="C1", label="Poisson", ax=ax[0])
plot_dist(b; color="C2", label="Gaussian", ax=ax[1])
gcf()

See plot_dist
Dot Plot
using ArviZPythonPlots
use_style("arviz-darkgrid")
data = randn(1000)
plot_dot(data; dotcolor="C1", point_interval=true)
title("Gaussian Distribution")
gcf()

See plot_dot
ECDF Plot
using ArviZPythonPlots, Distributions
use_style("arviz-darkgrid")
sample = randn(1_000)
dist = Normal()
plot_ecdf(sample; cdf=x -> cdf(dist, x), confidence_bands=true)
gcf()

See plot_ecdf
ELPD Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
d1 = load_example_data("centered_eight")
d2 = load_example_data("non_centered_eight")
plot_elpd(Dict("Centered eight" => d1, "Non centered eight" => d2); xlabels=true)
gcf()

See plot_elpd
Energy Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
plot_energy(data; figsize=(12, 8))
gcf()

See plot_energy
ESS Evolution Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
idata = load_example_data("radon")
plot_ess(idata; var_names=["b"], kind="evolution")
gcf()

See plot_ess
ESS Local Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
idata = load_example_data("non_centered_eight")
plot_ess(idata; var_names=["mu"], kind="local", marker="_", ms=20, mew=2, rug=true)
gcf()

See plot_ess
ESS Quantile Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
idata = load_example_data("radon")
plot_ess(idata; var_names=["sigma"], kind="quantile", color="C4")
gcf()

See plot_ess
Forest Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
centered_data = load_example_data("centered_eight")
non_centered_data = load_example_data("non_centered_eight")
plot_forest(
[centered_data, non_centered_data];
model_names=["Centered", "Non Centered"],
var_names=["mu"],
)
title("Estimated theta for eight schools model")
gcf()

See plot_forest
Ridge Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
rugby_data = load_example_data("rugby")
plot_forest(
rugby_data;
kind="ridgeplot",
var_names=["defs"],
linewidth=4,
combined=true,
ridgeplot_overlap=1.5,
colors="blue",
figsize=(9, 4),
)
title("Relative defensive strength\nof Six Nation rugby teams")
gcf()

See plot_forest
Plot HDI
using Random
using ArviZPythonPlots
Random.seed!(308)
use_style("arviz-darkgrid")
x_data = randn(100)
y_data = 2 .+ x_data .* 0.5
y_data_rep = 0.5 .* randn(200, 100) .+ transpose(y_data)
plot(x_data, y_data; color="C6")
plot_hdi(x_data, y_data_rep; color="k", plot_kwargs=Dict("ls" => "--"))
gcf()

See plot_hdi
Joint Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("non_centered_eight")
plot_pair(
data;
var_names=["theta"],
coords=Dict("school" => ["Choate", "Phillips Andover"]),
kind="hexbin",
marginals=true,
figsize=(10, 10),
)
gcf()

See plot_pair
KDE Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
## Combine different posterior draws from different chains
obs = data.posterior_predictive.obs
size_obs = size(obs)
y_hat = reshape(obs, prod(size_obs[1:2]), size_obs[3:end]...)
plot_kde(
y_hat;
label="Estimated Effect\n of SAT Prep",
rug=true,
plot_kwargs=Dict("linewidth" => 2, "color" => "black"),
rug_kwargs=Dict("color" => "black"),
)
gcf()

See plot_kde
2d KDE
using Random
using ArviZPythonPlots
Random.seed!(308)
use_style("arviz-darkgrid")
plot_kde(rand(100), rand(100))
gcf()

See plot_kde
KDE Quantiles Plot
using Random
using Distributions
using ArviZPythonPlots
Random.seed!(308)
use_style("arviz-darkgrid")
dist = rand(Beta(rand(Uniform(0.5, 10)), 5), 1000)
plot_kde(dist; quantiles=[0.25, 0.5, 0.75])
gcf()

See plot_kde
Pareto Shape Plot
using ArviZ, ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
idata = load_example_data("radon")
loo_data = loo(idata)
plot_khat(loo_data; show_bins=true)
gcf()

LOO-PIT ECDF Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
idata = load_example_data("radon")
plot_loo_pit(idata; y="y", ecdf=true, color="maroon")
gcf()

See loo_pit
, plot_loo_pit
LOO-PIT Overlay Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
idata = load_example_data("non_centered_eight")
plot_loo_pit(; idata, y="obs", color="indigo")
gcf()

See loo_pit
, plot_loo_pit
Quantile Monte Carlo Standard Error Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
plot_mcse(data; var_names=["tau", "mu"], rug=true, extra_methods=true)
gcf()

See plot_mcse
Quantile MCSE Errobar Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("radon")
plot_mcse(data; var_names=["sigma_a"], color="C4", errorbar=true)
gcf()

See plot_mcse
Pair Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
centered = load_example_data("centered_eight")
coords = Dict("school" => ["Choate", "Deerfield"])
plot_pair(
centered; var_names=["theta", "mu", "tau"], coords, divergences=true, textsize=22
)
gcf()

See plot_pair
Hexbin Pair Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
centered = load_example_data("centered_eight")
coords = Dict("school" => ["Choate", "Deerfield"])
plot_pair(
centered;
var_names=["theta", "mu", "tau"],
kind="hexbin",
coords,
colorbar=true,
divergences=true,
)
gcf()

See plot_pair
KDE Pair Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
centered = load_example_data("centered_eight")
coords = Dict("school" => ["Choate", "Deerfield"])
plot_pair(
centered;
var_names=["theta", "mu", "tau"],
kind="kde",
coords,
divergences=true,
textsize=22,
)
gcf()

See plot_pair
Point Estimate Pair Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
centered = load_example_data("centered_eight")
coords = Dict("school" => ["Choate", "Deerfield"])
plot_pair(
centered;
var_names=["mu", "theta"],
kind=["scatter", "kde"],
kde_kwargs=Dict("fill_last" => false),
marginals=true,
coords,
point_estimate="median",
figsize=(10, 8),
)
gcf()

See plot_pair
Parallel Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
ax = plot_parallel(data; var_names=["theta", "tau", "mu"])
ax.set_xticklabels(ax.get_xticklabels(); rotation=70)
draw()
gcf()

See plot_parallel
Posterior Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
coords = Dict("school" => ["Choate"])
plot_posterior(data; var_names=["mu", "theta"], coords, rope=(-1, 1))
gcf()

See plot_posterior
Posterior Predictive Check Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("non_centered_eight")
plot_ppc(data; data_pairs=Dict("obs" => "obs"), alpha=0.03, figsize=(12, 6), textsize=14)
gcf()

See plot_ppc
Posterior Predictive Check Cumulative Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("non_centered_eight")
plot_ppc(data; alpha=0.3, kind="cumulative", figsize=(12, 6), textsize=14)
gcf()

See plot_ppc
Rank Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("centered_eight")
plot_rank(data; var_names=["tau", "mu"])
gcf()

See plot_rank
Regression Plot
using ArviZ, ArviZPythonPlots, ArviZExampleData, DimensionalData
use_style("arviz-darkgrid")
data = load_example_data("regression1d")
x = range(0, 1; length=100)
posterior = data.posterior
constant_data = convert_to_dataset((; x); default_dims=())
y_model = broadcast_dims(muladd, posterior.intercept, posterior.slope, constant_data.x)
posterior = merge(posterior, (; y_model))
data = merge(data, InferenceData(; posterior, constant_data))
plot_lm("y"; idata=data, x="x", y_model="y_model")
gcf()

See plot_lm
Separation Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("classification10d")
plot_separation(data; y="outcome", y_hat="outcome", figsize=(8, 1))
gcf()
See plot_separation
Trace Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("non_centered_eight")
plot_trace(data; var_names=["tau", "mu"])
gcf()

See plot_trace
Violin Plot
using ArviZPythonPlots, ArviZExampleData
use_style("arviz-darkgrid")
data = load_example_data("non_centered_eight")
plot_violin(data; var_names=["mu", "tau"])
gcf()

See plot_violin
Styles
using ArviZPythonPlots, Distributions, PythonCall
x = range(0, 1; length=100)
dist = pdf.(Beta(2, 5), x)
style_list = [
"default",
["default", "arviz-colors"],
"arviz-darkgrid",
"arviz-whitegrid",
"arviz-white",
"arviz-grayscale",
["arviz-white", "arviz-redish"],
["arviz-white", "arviz-bluish"],
["arviz-white", "arviz-orangish"],
["arviz-white", "arviz-brownish"],
["arviz-white", "arviz-purplish"],
["arviz-white", "arviz-cyanish"],
["arviz-white", "arviz-greenish"],
["arviz-white", "arviz-royish"],
["arviz-white", "arviz-viridish"],
["arviz-white", "arviz-plasmish"],
"arviz-doc",
"arviz-docgrid",
]
fig = figure(; figsize=(20, 10))
for (idx, style) in enumerate(style_list)
pywith(pyplot.style.context(style; after_reset=true)) do _
ax = fig.add_subplot(5, 4, idx; label=idx)
colors = pyplot.rcParams["axes.prop_cycle"].by_key()["color"]
for i in 0:(length(colors) - 1)
ax.plot(x, dist .- i, "C$i"; label="C$i")
end
ax.set_title(style)
ax.set_xlabel("x")
ax.set_ylabel("f(x)"; rotation=0, labelpad=15)
ax.set_xticklabels([])
end
end
tight_layout()
gcf()
